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Cold phase fluid model of the longitudinal dynamics
of space-charge-dominated beams
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The dynamics of a longitudinally cold, charged-particle beam can be simulated by dividing the beam
into slices and calculating the motion of the slice boundaries due to the longitudinal electric field
generated by the beam. On each time step, the beam charge is deposited onto an (r , z) grid, and an
existing (r , z) electrostatic field solver is used to find the longitudinal electric field. Transversely,
the beam envelope equation is used for each slice boundary separately. In contrast to theg-factor
model, it can be shown analytically that the repulsive electric field of a slice compressed to zero
length is bounded. Consequently, this model allows slices to overtake their neighbors, effectively
incorporating mixing. The model then effectively describes a cold fluid in longitudinalz, vz phase
space. Longitudinal beam compression calculations based on this cold phase fluid model showed
that slice overtaking reflects local mixing, while the global phase space structure is
preserved. ©2003 American Institute of Physics.@DOI: 10.1063/1.1541015#
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I. INTRODUCTION

Charged-particle beams can be compressed longit
nally by imposing a head-to-tail velocity gradient. The tran
verse focusing lattice in which compression takes pl
should be designed carefully to ensure that the beam rem
approximately matched. In order to design such a lattice,
longitudinal dynamics of the beam needs to be simula
accurately, such that the longitudinal compression and th
fore the beam current at a given location along the lattice
be calculated correctly.

Generally, three-dimensional~3D! particle-in-cell simu-
lations take a large amount of computing time and are th
fore unattractive as design and scoping tools. Instead, a
gitudinal fluid/transverse envelope model as shown in Fig
can be used.1 In this model, the beam is divided into slice
longitudinally. In the nonrelativistic limit, the longitudina
beam dynamics can then be calculated by solving Newto
equation for each slice boundary separately:

m
dv i

dt
5qeEz~zi !, ~1!

in which m andqe are the particle mass and charge,zi and
v i are the longitudinal position and velocity of slice boun
ary i , andEz is the longitudinal electric field generated b
the beam.

In addition to the longitudinal position and velocity,
horizontal and vertical beam semi-axis is associated w
each slice boundary. The transverse dynamics of the b
are then calculated by employing the transverse enve

a!Present address: Human Genome Center, Institute of Medical Scie
University of Tokyo, Japan; electronic mail: mdehoon@ims.u-tokyo.ac
8551070-664X/2003/10(3)/855/7/$20.00

Downloaded 27 Feb 2003 to 133.103.74.218. Redistribution subject to A
i-
-
e
in
e
d
e-
n

e-
n-
1

’s

h
m

pe

equation for each slice boundary separately. Since the sh
ing of the longitudinal electric field by the conducting pip
surrounding the beam depends on the distance of the bea
the pipe wall, an accurate calculation of the transverse be
dynamics is necessary to simulate the longitudinal dynam
correctly.

The longitudinal electric fieldEz can be calculated in
several ways. Most commonly, theg-factor model is used:2

Ez52
g

4pe0

]l

]z
, ~2!

in which l is the line charge density andg is a geometry
factor given by

g5 lnS R2

ahav
D , ~3!

in which R is the pipe radius andah andav are the horizontal
and vertical beam semi-axes. Theg-factor model is valid if
the beam densityr is uniform, and the beam semi-axes
well as the line charge density vary slowly over a longitu
nal distance comparable to the pipe radius.

The g-factor model applied to an ideal cold fluid brea
down in three cases. Near the beam ends, the beam s
axes and line charge density vary rapidly, thereby violat
the assumptions of theg-factor model. Second, for highly
compressed beams, the beam length may be short or co
rable to the pipe radius. Finally, in shocks the beam prop
ties vary rapidly over a short distance.

More accurate variants of theg-factor model have been
derived, in which the restrictions on the validity of th
g-factor model are eased.3 Using these models, it was no
ticed in simulations that slices tend to overtake each ot
particularly near the beam ends if a large (*100) number of

ce,
© 2003 American Institute of Physics
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slices were used. This produced unphysical results, since
charge of a slice compressed to zero width leads to an
nitely large current at that location.

Previously, several explanations for the occurrence
slice overtaking have been proposed.4,5 First, the fluid model
may be invalid in the physical regime of interest. Second,
nonlinear nature of the fluid equations may cause longitu
nal acoustic waves occurring in the beam to steepen
shock waves. The fluid model then breaks down as fl
properties become double-valued. Finally, the calculated
gitudinal electric field may be insufficiently accurate, pa
ticularly near the beam ends.

In this paper, we will derive an analytic expression f
the longitudinal electric field in a charged-particle bea
From this expression, we can show that the model show
Fig. 1 allows slice overtaking to occur. This means tha
conventional fluid model breaks down. Next, we describ
new method to calculate the space charge field by depos
the charge of the beam onto an (r , z) grid and using an
existing (r , z) field solver to find the longitudinal electri
field. This method should give accurate results, even in
regimes where theg-factor model fails. We then allow slice
in the model to pass through each other, resulting in a c
phase fluid model, in which the beam is described as a c
fluid in z, vz phase space.

II. THE LONGITUDINAL FIELD OF A SPACE-CHARGE-
DOMINATED BEAM

First, we derive analytically the longitudinal electr
field of a beam in an infinitely long circular pipe. At bea
energies relevant to heavy-ion inertial fusion, the beam
be considered to be nonrelativistic in the beam frame.
solving the equations of motion in the classical limit in t
beam frame, followed by a transformation to the laborat
frame, relativistic effects can be captured to first order.
will therefore calculate the longitudinal field generated
the beam in the beam frame in the nonrelativistic limit.

We approximate the beam to be circular transversely
stead of elliptical, usinga5Aahav for the radius. Poisson’s
equation can then be written as

FIG. 1. The longitudinal fluid/transverse envelope model.
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]r S r
]f

]r D1
]2f

]z2 52
r

e0
. ~4!

The solution to this equation can be written in terms o
Fourier–Bessel expansion:

f~r ,z!5 (
n51

`

f n~z!J0S xnr

R D , ~5!

in which J0 is the Bessel function of order zero,xn is thenth
zero ofJ0 , and f n(z) is a set of functions to be determine
We assume that the charge density is transversely uniform
to the beam radiusa(z):

r~r ,z!5
l~z!

pa~z!2 uS 12
r

a~z! D , ~6!

in which l is the line charge density andu is the Heaviside
step function. For different values ofn, the Bessel functions
J0(xnr /R) are orthogonal.6 We can then find an ordinary
differential equation forf n(z):

f n9~z!2 f n~z!S xn

R D 2

52
2

e0

l~z!

pa~z!

1

@xnJ1~xn!#2

xn

R
J1S xna~z!

R D , ~7!

in which the primes denote differentiation with respect toz.
This equation can be solved as3

f n~z!5
1

pe0

1

@xnJ1~xn!#2

3E
2`

`

expS 2
xn

R
uz2z8u D J1S xna~z8!

R D l~z8!

a~z8!
dz8,

~8!

in which we used the boundary condition thatf n(z)→0 for
uzu→`. Summing over the Fourier–Bessel components th
gives

f~r ,z!5
1

pe0
(
n51

`

J0S xnr

R D 1

@xnJ1~xn!#2

3E
2`

`

expS 2
xn

R
uz2z8u D J1S xna~z8!

R D l~z8!

a~z8!
dz8.

~9!

To find the longitudinal electric field, we take the parti
derivative with respect toz and average transversely:

^Ez~z!&52
1

pa2 E
0

a ]f~r ,z!

]z
2prdr . ~10!

This yields

^Ez~z!&5
2

pe0a~z! (
n51

`
1

@xnJ1~xn!#2 J1S xna~z!

R D
3E

2`

`

sgn~z2z8!expS 2
xn

R
uz2z8u D

•H J1S xna~z8!

R D l~z8!

a~z8! J dz8. ~11!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Incidentally, we can derive theg-factor model from this
equation by assuming that the charge densityl/pa2 is uni-
form throughout the beam and expanding the factor in bra
ets in a Taylor-series aroundz85z:

^Ez~z!&52
2

pe0

]l~z!

]z

3 (
n51

`
R

xna

1

@xnJ1~xn!#2 J1S xna

R D J0S xna

R D .

~12!

Using Eq.~A3! in the Appendix, we can evaluate the sum
1
4 ln(R/a) to find theg-factor model given in Eqs.~2!, ~3!.

Now we can calculate the longitudinal electric field a
ing on a slice boundary for a single slice of length 2L with
uniform line charge densityl and beam radiusa. In Eq.~11!,
we use l(z8)5l@u(z82L)2u(z81L)# and a(z8)5a to
find

^Ez~z!&5
2l

pe0a2 (
n51

` F J1S xna

R D
xnJ1~xn!

G 2

R

xn

32 expS 2
xnL

R D sinhS xnz

R D . ~13!

On the slice boundaries,z56L, we find

^Ez~6L !&56
2l

pe0a2 (
n51

` F J1S xna

R D
xnJ1~xn!

G 2

R

xn

3F12expS 2
2xnL

R D G . ~14!

For a slice compressed to zero length (L→0), this gives

^Ez&656
4lL

pe0a2 (
n51

` F J1S xna

R D
xnJ1~xn!

G 2

. ~15!

The sum on the right-hand side is equal to1
4, independent of

the ratioa/R, as shown in the Appendix@Eq. ~A4!#. Using
2Ll5Q, in which Q is the charge in the slice, we find

^Ez&656
Q

2pe0a2 . ~16!

This equation shows that the repulsive electric field is eq
to the field of an infinite slab of surface charge dens
Q/pa2, as expected from Gauss’ law. The repulsive elec
field is finite for a nonzero beam radiusa. Consequently, if
two slice boundaries approach each other with a sufficie
large velocity, they will overtake each other. In compariso
in the g-factor model in Eq.~3! the derivative]l/]z would
become infinite, yielding an unbounded repulsive force
tween the slice boundaries that would prevent slice over
ing.
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III. THE COLD PHASE FLUID MODEL

We will now describe the cold phase fluid model,
which the longitudinal electric field is calculated accurate
and slices are allowed to overtake each other. The s
boundaries are kept unbent by averaging the longitud
electric field transversely. This model was implemented a
new module, named Hermes, of the WARP simulati
package.7 In order to calculate the longitudinal electric fie
accurately, WARP’s (r , z) field solver was used instead o
the g-factor model. The charge of the beam slices is dep
ited onto an (r , z) grid, assuming that transversely all slice
are circular instead of elliptical, and the field solver is call
to calculate the electric field. This allows us to calculate
electric field correctly even near the beam ends, and also
highly compressed beams. In addition, the field can be
culated even after slice overtaking has occurred.

In conventional fluid models, the line charge density c
be calculated by expandingQ(z) in a Taylor series, where
Q(z) is defined as the amount of charge to the left of po
tion z. Using the variables shown in Fig. 1, we find

l~zi !5S DQi 1 1/2

zi 112zi
D S zi2zi 21

zi 112zi 21
D

1S DQi 2 1/2

zi2zi 21
D S zi 112zi

zi 112zi 21
D1O~2!, ~17!

which is a weighted average of the average line charge d
sity in the two slices. If either of the slices is compressed
zero width, l(zi) diverges. The current, as needed in t
envelope equation, would then become infinite.

Instead, in the cold phase fluid model the line cha
density is calculated by summing the charge deposited o
the (r , z) grid at a givenz-location. This forces the line
charge density to be finite, even in the event of slice ov
taking. Effectively, the line charge density is averaged ove
longitudinal distance corresponding to one grid cell wid
This is similar to the concept of artificial viscosity,8,9 where a
steep gradient is artificially smeared over several grid c
widths in order to avoid divergences.

Alternatively, one may consider expanding the inver
function z(Q), which yields

1

l~zi !
5S zi 112zi

DQi 1 1/2
D S DQi 2 1/2

DQi 1 1/21DQi 2 1/2
D

1S zi2zi 21

DQi 2 1/2
D S DQi 1 1/2

DQi 1 1/21DQi 2 1/2
D1O~2!,

~18!

which is a weighted harmonic average of the line cha
density in the two slices. The line charge density calcula
from this expression remains finite even if one of the tw
slices is compressed to zero width. If equal charges are
signed to all slices, we find

l~zi !5
2DQ

zi 112zi 21
1O~2!, ~19!

which is the total charge in the two slices divided by th
combined length.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The longitudinal dynamics of the beam can most ea
be understood as the motion of a cold phase fluid inz, vz

phase space. The phase fluid is represented as a contin
curve in phase space. Because the curve has zero width
phase fluid is considered to be cold. However, since we
low slice overtaking to occur in this model, the curve m
fold over in phase space, which means that more than
fluid velocity may be associated with a given locationz. In
the limit of extreme overtaking, the resulting curve in pha
space may be seen to represent in an approximate man
thermal distribution invz . In most cases, however, slic
overtaking is observed to occur on a much smaller sc
indicative of mixing on a micro-scale. These cases canno
treated by a conventional fluid model, in which the curre
would have become infinitely large during the event of sl
overtaking, causing the transverse envelope equation
break down.

The cold phase fluid model bears some similarities t
particle-in-cell model. The main differences are the conn
tivity between the slice boundaries and the ability of slices
stretch and contract longitudinally and transversely. In a c
ventional particle-in-cell simulation, particles are not order
and have a fixed size.

IV. EXAMPLE CALCULATION

We have applied the cold phase fluid model to design
example drift compression system of the Integrated Rese
Experiment~IRE!, a major next step in the development
Heavy Ion Inertial Fusion.11 To design such a system, w
first define a desired final pulse shape at the end of d
compression. We transport this beam backward in time o
one half period of a transport lattice. As the beam expa
longitudinally during this run, its current decreases, and
adjust the lattice half period and quadrupole strength
match the new current. We then reload the beam at the en
drift compression, and run it through the adjusted lattice h
period. This process is iterated over until the properties
the half period have converged. We then continue to the n
lattice half period. All lattice half periods are set up usi
this routine, until the current at the beam center has
creased to a user-specified value at the beginning of
compression. This procedure sets up the transverse focu
lattice, and also finds the required initial beam profile a
head-to-tail velocity gradient.10

The beam current changes most rapidly near the en
drift compression, causing a mismatch to occur there. In
backward calculation, this mismatch then persists until
beginning of drift compression. To minimize the occurren
of mismatches, the beam can be rematched at the begin
of drift compression. Since the beam current changes slo
compared to a betatron period for most of the drift compr
sion, after rematching the beam stays adiabatically matc
in a forward run. Near the end of drift compression, t
rapidly increasing current again incites a mismatch. T
mismatch does not affect the beam as seriously though,
cause it lasts for only a short distance.

Rematching the beam at the beginning of drift compr
sion causes the forward run to differ from the backward r
Downloaded 27 Feb 2003 to 133.103.74.218. Redistribution subject to A
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The final beam pulse will therefore be different from th
desired final beam pulse. The difference is typica
negligible,10 since the beam radii in the forward and bac
ward run are approximately equal on average even a
rematching.

Generally, the drift compression section for heavy i
inertial fusion is designed such that the beam expands tr
versely near the end of drift compression in order to ena
focusing the beam onto a small spot. In the example d
compression system shown here, the beam expands smo
from 1.5 cm at the beginning of drift compression to 6 cm
the end. The aperture was chosen to increase in finite s
This drastically reduces the run time of a comparative
particle-in-cell simulation of the system, since the capac
matrix to calculate the image charges on the pipe needs t
recalculated only a few times.

A drift compression section was designed for a K1 ion
beam of 3.90625mC at an energy of 200 MeV, which ar
typical IRE parameters. The final beam duration was cho
to be 3 ns, while the final beam profile consisted of a flat-
with 25% parabolic ends on each side. The beam was
vided into 400 slices longitudinally, each slice having t
same amount of charge. The longitudinal electric field w
calculated on a 643512 (r , z) grid. A time step size was
used that corresponds to a distance traveled by the bea
about 5 mm.

Figure 2 shows the horizontal and vertical semi-axes
the beam along the drift compression section both for
beam center and for the tail of the beam~defined as the
leftmost slice boundary in the simulation!. Whereas virtually
no mismatch occurs at the beam center, near the end of
compression a small mismatch develops at the tail, where
beam current increases most rapidly. A similar mismatch
curs for the head of the beam.

The position of the slice boundaries at the end of d
compression is shown in Fig. 3 as a function of the sl
index. On a global scale, this curve seems to be very smo

FIG. 2. The horizontal and vertical beam semi-axes, as well as the aper
as a function of position along the drift compression section.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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However, there were nine occurrences of slice overtakin
this beam. An example of slice overtaking occurring near
beam center is shown in Fig. 4. This illustrates that sl
overtaking should not be regarded as a major deviation of
behavior of the beam. Rather, slice overtaking suggests
occurrence of longitudinal mixing on a local scale.

The longitudinal phase space is shown in Fig. 5. N
the beam ends, an increase in the longitudinal emittanc
manifested by a larger area of phase space occupied by
beam. The emittance growth can be understood in more
tail by performing 1D ~longitudinal!, 2D (r , z), or 3D
particle-in-cell simulations of the beam. Globally, the pha
space area occupied by the beam is still well represente
a smooth curve, which validates the applicability of the co
phase space model in this regime.

FIG. 3. The position of the slice boundaries as a function of their inde
the end of the drift compression section. Even though the curve appea
be very smooth and monotonically increasing, this figure contains nine
overtaking events.

FIG. 4. The position of the slice boundaries of a short section of the b
as a function of their index at the end of the drift compression sect
showing an example of slice overtaking.
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Figure 6 shows the longitudinal phase space of a sec
of the beam in which slice overtaking occurred~compare to
Fig. 4!. The longitudinal velocity has become double valu
as a consequence of slice overtaking. This would caus
conventional fluid model to break down.

V. DISCUSSION

The longitudinal dynamics of a charged particle bea
can be simulated by dividing the beam into slices longitu
nally and calculating the longitudinal motion of the slic
boundaries. Previously, the beam was then treated as a
fluid, in which slices retained their order, and slice overta
ing was considered to be caused by an insufficiently accu
simulation. In addition, a slice compressed to zero wid
would have an infinite line charge density, resulting in

t
to
e

m
,

FIG. 5. The longitudinal phase space of the beam at the end of the
compression section.

FIG. 6. The longitudinal phase space of a section of the beam at the en
the drift compression section, showing that the longitudinal velocity
become double valued due to slice overtaking.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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infinite current in the transverse envelope equation. In pr
tice, simulations were therefore stopped as soon as two s
overtook each other.

However, the repulsive force on a slice boundary be
bounded as a slice is compressed to zero width implies
this model intrinsically, though implicitly, includes slic
overtaking. A simple fluid model is therefore unsuitable
describe the longitudinal dynamics of a beam and should
replaced by a cold phase fluid model. An infinite line cha
density can then be avoided by averaging the charge de
over a small longitudinal distance.

In simulations of our cold phase fluid model, slice ove
taking occurred regularly without disturbing the overall d
namics of the beam. Slice overtaking may be caused by
numerics as well as by the physics of the problem. Wher
slice overtaking events are expected to occur near the b
ends, where the longitudinal field varies rapidly, numer
may be the cause of slice overtaking in the beam core. H
ever, even then a cold phase fluid model is preferable ov
simple fluid model, as it allows us to perform a sequence
simulations of increasing accuracy. In a converged simu
tion either slices do not overtake each other, or the few
maining slice overtaking events do not appreciably affect
calculation of the physical quantities in which we are int
ested. A simple fluid model does not allow us to perfo
such a sequence of simulations, since numerous simula
would have to be halted prematurely due to slice overtak
In addition, increasing the number of slices to improve
accuracy of a simulation leads to a closer distance betw
the slice boundaries, making slice overtaking more like
Therefore, even very accurate simulations with a large nu
ber of slices may break down if a simple fluid model is us

Slice overtaking caused by the physics of the problem
indicative of local longitudinal mixing of the beam. Rapid
expanding ends of a highly compressed beam, or imper
matching as in the example we showed, may lead to lo
mixing and therefore to slice overtaking in the cold pha
fluid model. In addition, to investigate the effect on dr
compression of errors in the initial longitudinal velocity gr
dient, a random longitudinal velocity error may be added
the slice boundaries initially. This may lead to slice overta
ing at an early stage of the simulation.

In the case of extreme slice overtaking, the result
phase space structure can be seen as representing the th
spread in the longitudinal velocity. Additional calculation
using particle-in-cell simulations would be necessary to
derstand such a phase space structure fully.

We can compare our results to the case of a hi
brightness electron beam, in which the beam length may
much shorter than the pipe radius. The presence of the
ducting wall can then be ignored and a free-space solu
can be employed. An example of longitudinal bunching of
electron beam12 using a particle-in-cell calculation show
how the longitudinal phase space folds over, resulting in l
gitudinal mixing on a global scale. In the regime relevant
heavy ion fusion, however, the beam is much longer than
pipe radius at the beginning of drift compression, and co
parable to the pipe radius at the end. A free-space solu
would therefore not be suitable. Although we were able
Downloaded 27 Feb 2003 to 133.103.74.218. Redistribution subject to A
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avoid global mixing by a careful design of the drift compre
sion system, the cold phase-space model showed that mi
on a local scale does occur.
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APPENDIX: CALCULATION OF BESSEL SUMS

The Kneser–Sommerfeld formula for a Bessel functi
of order zero is given by13,14

(
n51

`
J0~xna!J0~xna8!

~s22xn
2!@J1~xn!#2

5
pJ0~as!

4J0~s!
@J0~s!Y0~a8s!2Y0~s!J0~a8s!#, ~A1!

for 0<a<a8<1. This formula can be derived usin
Cauchy’s residue theorem. A different version of t
Kneser–Sommerfeld formula given in the classic text
Bessel functions by Watson15 is incorrect.16–19

By taking the derivative with respect tos of both sides
of this equation, and evaluating the result ats50, we find

(
n51

`
J0~xna!J0~xna8!

xn
4@J1~xn!#2 5

1

8
@~a21a82!ln a1a221#.

~A2!

Next, we take the derivative with respect toa8 to find

(
n51

`
J0~xna!J1~xna8!

xn
3@J1~xn!#2 52

1

4
a8ln a. ~A3!

For a5a8, this reduces to the Bessel sum appearing in
~12!. By taking the derivative with respect toa, we find

(
n51

`
J1~xna!J1~xna8!

@xnJ1~xn!#2 5
1

4

a8

a
, ~A4!

which for a5a8 reduces to the Bessel sum used to der
Eq. ~16!.

Alternatively, Eqs.~A3!, ~A4! can be derived by setting
the radial electric field of an infinitely long cylindrical beam
with radiusa equal to the radial electric field calculated fro
the electrostatic potential given in Eq.~9!.
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